SBIR-STTR Award

Ultra-Efficient Integrated Photonic Quantum Transceiver for High-Speed Quantum Communications
Award last edited on: 1/18/2023

Sponsored Program
STTR
Awarding Agency
NASA : GRC
Total Award Amount
$856,658
Award Phase
2
Solicitation Topic Code
T5.04
Principal Investigator
Weerasinghe Priyantha

Company Information

Amethyst Research Inc (AKA: Amethyst Research Incorporated)

123E Case Street
Ardmore, OK 73401
   (580) 657-2575
   info@amethystresearch.com
   www.amethystresearch.com

Research Institution

University of California - Santa Barbara

Phase I

Contract Number: 80NSSC20C0590
Start Date: 8/18/2020    Completed: 9/30/2021
Phase I year
2020
Phase I Amount
$124,999
This program will develop a new class of 'on-a-chip' quantum transceivers that can operate at T ~ 250K range with performance meeting NASA's needs for secure ultra-high-speed data free-space communications for future aerospace applications. Ground-to-satellite and satellite-to-satellite quantum encrypted communications, distributed sensing, and networking demand a disruptive ‘on-a-chip’ technology that permits ultra-efficient, high-speed entangled-photon generation and single-photon detection packaged to provide low size, weight, power, and cost. The program integrates technology developed by both the University of California, Santa Barbara, (UCSB) and Amethyst. The UCSB Team has demonstrated a <0.4 dB/cm loss AlGaAs-on-insulator photonics platform for entangled-photon pair generation. Signal rates >10 GHz/mW2 have been demonstrated—at least 100X faster than all other approaches and 10,000X faster than silicon integrated-photonic sources. Waveguide-integrated superconducting single-photon detectors have also been demonstrated with sub-40 ps timing jitter, sub-milli-Hertz dark count rates, unity quantum efficiency, and -40 dB crosstalk. The Amethyst team has demonstrated InGaAs/InP single-photon avalanche detectors (SPADs) capable of >100 MHz bandwidth at 250 K by using gating and proprietary bulk defect passivation techniques. By integrating these source and detector technologies, the program will develop a high-speed quantum transceiver with an entangled-photon source and on-chip photonic conditioning components (transmitter) and photonic interferometric circuits with waveguide-integrated single-photon detectors (receiver). This ‘on-a-chip’ quantum transceiver will be capable of uncompromised 'qubit' detection. The Phase I program will deliver an emitter and detector device at TRL 4. This will provide the necessary platform for Phase II: A full systems-level design, fabrication and testing of an ‘on-a-chip’ AlGaAsOI/SPAD quantum photonic transceiver. Potential NASA Applications (Limit 1500 characters, approximately 150 words) The development of a quantum photonic transceiver is vital to meet NASA’s mission objectives for a scalable quantum network architecture, including distributed quantum sensing, improved timing, and secure communications. The program directly addresses the needs of the Deep Space Optical Communications program, which seeks to improve communications performance 10 to 100 times over the current state-of-the-art without increasing mass, volume, or power, which this proposal addresses. Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words) There is a significant and pressing need for a low SWaP chip-scale quantum photonic transceiver that can provide robust and secure high-speed satellite-to-satellite and satellite-to-ground communications to meet the ever-growing security and bandwidth requirements of the commercial communications market.

Phase II

Contract Number: 80NSSC22CA025
Start Date: 3/22/2022    Completed: 3/21/2024
Phase II year
2022
Phase II Amount
$731,659
Ground-to-satellite and satellite-to-satellite quantum encrypted communications, distributed sensing, and networking demand a disruptive ‘on-a-chip’ technology that permits ultra-efficient, high-speed entangled-photon generation and single-photon detection packaged to provide low size, weight, power, and cost. Building on the success of our Phase I program, this Phase II will develop and demonstrate a quantum photonics transceiver with plug-and-play modules comprising a time-bin entangled-photon pair generator, time-bin analyzers, and single-photon detector arrays, all operating at room temperature. The program integrates technology developed by the University of California, Santa Barbara, (UCSB) and Amethyst Research. The UCSB Team has demonstrated a <0.4 dB/cm loss AlGaAs-on-insulator photonics platform for entangled-photon pair generation. Signal rates >10 GHz/mW2 have been demonstrated—at least 100X faster than all other approaches and 10,000X faster than silicon integrated-photonic sources. Waveguide-integrated superconducting single-photon detectors have also been demonstrated with sub-40 ps timing jitter, sub-milli-Hertz dark count rates, unity quantum efficiency, and -40 dB crosstalk. The Amethyst team has demonstrated InGaAs and GaSb based single-photon avalanche detectors (SPADs) capable of >100 MHz bandwidth at 250 K by using gating and proprietary bulk defect passivation techniques. By integrating these source and detector technologies, the program will deliver a high-speed quantum transceiver with an entangled-photon source and on-chip photonic conditioning components (transmitter) and photonic interferometric circuits with waveguide-integrated single-photon detectors (receiver). This ‘on-a-chip’ quantum transceiver will be capable of uncompromised 'qubit' detection and demonstrate a time-bin entangled-pair QKD transceiver with plug-and-play receiver, transmitter, and detector modules at TRL 6. Potential NASA Applications (Limit 1500 characters, approximately 150 words) There is a need to develop large Low Earth Orbit (LEO) constellations that can deliver high-throughput broadband services with low latency. The development of a quantum photonic transceiver is vital to meet NASA’s mission objectives for a scalable quantum network architecture, including distributed quantum sensing, improved timing, and secure communications. This program directly addresses the needs of the Deep Space Optical Communications program, which seeks to improve communications performance 10 to 100 times over state-of-the-art. Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words) There is a pressing need for a low SWaP chip-scale quantum photonic transceiver that can provide robust and secure high-speed communications. Integrated quantum photonic devices may also find applications in quantum-enhanced distributed sensing, entanglement-based remote sensing with quantum frequency combs, LiDAR, optical interconnects for distributed quantum networks and the quantum internet.