SBIR-STTR Award

Phase II: Fluorescence guided surgery standardization tools
Award last edited on: 2/17/2024

Sponsored Program
SBIR
Awarding Agency
NIH : NIBIB
Total Award Amount
$2,239,470
Award Phase
2
Solicitation Topic Code
286
Principal Investigator
Brian W Pogue

Company Information

Quel Imaging LLC

3 Freeman Road
Hanover, NH 03755
   (603) 359-1669
   N/A
   www.quelimaging.com
Location: Single
Congr. District: 02
County: Grafton

Phase I

Contract Number: 1R43EB029804-01A1
Start Date: 9/30/2020    Completed: 6/30/2022
Phase I year
2020
Phase I Amount
$266,396
Optical imaging systems form the largest technological market sector in medicine today, dominating tool development in many surgical and gastroenterology specialties. Yet when advanced optical imaging devices are compared to radiological devices, there is a stark lack of calibration, validation and standardization which occurs. The lack of methods for multicenter calibration, standardization between vendors, and regulatory guidance on performance targets across vendors, all leads to a high inefficiency and lack of reproducibility, and a lack of the ability to switch imaging systems for the same use, as is done routinely in radiology. One of the more complicated but critical factors with optical imaging in tissue is accounting for how tissue optical properties, spectral range and tissue layers/depths affect the image quality in non-linear and non-intuitive ways. In this application, we develop an implicitly scalable venture, 3D printed surgical device test targets, coupled to a consulting network for performance evaluation, validation, system comparison, multi-center trial coordination, and inter-platform comparisons for inter-changeability and FDA clearance. To support the effort, we develop cloud based software data storage for test results, training protocols for users and network a group of expert users from academics, three surgical specialties and industry, to iteratively improve the value proposition. The focus of aim 1 in this application will be on complete automation of production of the test targets via 3D printing, to allow the simplest supply chain of production with each order. Aim 2 follows by hardening up our performance assessment goals as measured by the targets, iteratively developing recommendations for the individual systems with our expert consultants in each of general surgery, head and neck surgery and neurosurgery. The proposal follows years of study of the issue by a professional task group and identification of the key aims, including (i) automation of production, ii) distribution of at least 2 designs across at least 6 centers, and (iii) training and professional guidance for the field. The outcome of this work is directly targeted for fluorescence guided surgery as it is an emerging paradigm. The growth in new companies who differentiate themselves by unique system capabilities makes for a market where new 510(k) cleared devices may have the same indication, yet have differences in spectral ranges, magnifications, real-time display capabilities, and so the need for standardization is even more essential today. Objective performance evaluation will help homogenize performance and use and provide guidance to academics, surgery and industry. Beyond this field though, the extension of these targets to more traditional optical imaging tools used in medicine will also naturally occur as will our custom consulting and production, as we establish this platform and industry and academic networks.

Public Health Relevance Statement:
Narrative Quel Imaging will develop tissue phantoms for calibration and standardization of fluorescence guided surgery systems. The project involves iterative refinement, validation, inter-system comparisons, and training on utility and needs with expert users of these systems.

Project Terms:
Accounting; Adoption; Affect; Automation; Biomedical Research; Calibration; Clinical Trials; Feedback; Fluorescence; Future; Gastroenterology; Goals; Growth; Generalized Growth; Tissue Growth; ontogeny; Hand; Industrialization; Industry; Leadership; Medicine; Methods; Methodology; neurosurgery; Optics; optical; Paper; Production; Publishing; Radiology Specialty; General Radiology; Radiology; Recommendation; Risk; Running; Sales; Signal Transduction; Cell Communication and Signaling; Cell Signaling; Intracellular Communication and Signaling; Signal Transduction Systems; Signaling; biological signal transduction; Computer software; Software; medical specialties; Specialty; Surgical Specialties; Surgical Profession; surgery specialty; Standardization; Technology; Radiologic Technology; Radiological Technology; Testing; Time; Tissues; Body Tissues; Translations; Vendor; Work; Measures; conference; convention; summit; symposia; symposium; Group Identifications; Advocacy; Custom; base; improved; Phase; Variation; Variant; Medical; Multi-center trial; Multicenter Trials; Evaluation; Training; Individual; Workshop; Educational workshop; data retrieval; data storage; Data Storage and Retrieval; tool; Protocol; Protocols documentation; System; Test Result; Operative Procedures; Surgical; Surgical Interventions; Surgical Procedure; surgery; Operative Surgical Procedures; Consult; Performance; member; Devices; Reporting; Property; Manufacturer; Manufacturer Name; intra-operative imaging; intraoperative imaging; surgical imaging; Image-Guided Surgery; Advocate; Data; Head and Neck Surgery; Imaging Instrument; Imaging Tool; Imaging Device; Reproducibility; SBIR; Small Business Innovation Research; Small Business Innovation Research Grant; Validation; imaging; Image; cost; optic imaging; optical imaging; designing; design; Outcome; cost effective; Coupled; web interface; tool development; prototype; tissue phantom; 3-D print; 3-D printer; 3D printer; 3D printing; three dimensional printing; 3D Print; Geometry; cloud based; imaging system; career fair; professional networking; speed networking; career networking; fluorescence-guided surgery

Phase II

Contract Number: 2R44EB029804-02
Start Date: 9/30/2020    Completed: 4/30/2024
Phase II year
2022
(last award dollars: 2023)
Phase II Amount
$1,973,074

Fluorescence-guided surgery is increasingly being adopted by surgeons for the potential to obtain real-time feedback, improving their ability to identify normal and diseased tissues through enhanced contrast. Yet, even with this growing adoption, there is a stark lack of standardized system characterization or routine performance monitoring, largely because the optical technologies vary considerably in their geometry, configuration, components and ultimately their uses. The lack of performance targets across vendors leads to a high inefficiency and irreproducibility between systems, and prevents the ability to exchange systems for the same use. One of the more complicated but critical factors with optical imaging in tissue is accounting for how tissue optical properties, spectral range and tissue layers/depths affect the image quality in non-linear and non- intuitive ways. QUEL Imaging has developed methods for printing optical reference targets with controlled optical properties and fluorescence inclusions of varying concentrations. In this application, we plan to expand these product offerings by incorporating new fluorophores and target designs. Our centralized web-portal will provide image analysis services to report metrics used for system characterization. Performance monitoring targets will be developed for the purpose of implementing QA protocols specific to imaging form-factors: endoscopic, close-box and open widefield systems. Our quality management system will be enhanced to align with ISO13485 and ensure NIST traceability of our products. New printing techniques will be explored to determine methods for further reducing production costs and improving scalability. This work will be supported and guided by a panel of industry, academic and medical experts who will meet bi-annually to discuss current and future needs to help better standardize this field.

Public Health Relevance Statement:
Narrative QUEL Imaging will expand their product-line of tissue-mimicking fluorescence reference targets for performance characterization and standardization of fluorescence guided surgery systems. Performance monitoring and QA protocols utilizing newly developed phantoms will be created in collaboration with industry and academic partners. Quality management and enhanced traceability will be a cornerstone of these efforts which remain aligned with recommendations from an ongoing task group providing recommendations for improving standardization of clinical fluorescence imaging systems.

Project Terms:
absorption; Accounting; Adoption; Affect; Blood Vessels; vascular; Calibration; Clinical Trials; Disease; Disorder; Feedback; Fluorescence; Future; Genotype; Growth; Generalized Growth; Tissue Growth; ontogeny; Indocyanine Green; Ujoveridin; Wofaverdin; Industry; Ink; Light; Photoradiation; Medicine; Methods; Methylene blue; Azul de Metileno; Blu di Metilene; CI Basic Blue 9; Colour Index No. 52015; Methylene Blue N; Methylenum Caeruleum; Methylthionine Chloride; Methylthioninii Chloridum; Methylthioninium Chloride; Schultz No. 1038; Swiss Blue; Tetramethylthionine Chloride Trihydrate; On-Line Systems; online computer; web based; Online Systems; optical; Optics; Paper; Perfusion; Printing; Production; Publishing; Recommendation; resin; Plant Resins; Running; Cell Communication and Signaling; Cell Signaling; Intracellular Communication and Signaling; Signal Transduction Systems; Signaling; biological signal transduction; Signal Transduction; Surgical Profession; surgery specialty; Surgical Specialties; Standardization; Technology; Testing; Time; Tissues; Body Tissues; Translating; Vendor; Work; Isosulfan Blue; iso-sulfan blue; iso-sulphan blue; Generations; Sodium Fluorescein; Disodium Fluorescein; Fluorescein Disodium Salt; Uranine; base; quality assurance; improved; Procedures; Image Analysis; Image Analyses; image evaluation; image interpretation; Surface; Clinical; Phase; Medical; Ensure; Collaborations; Letters; tool; Adopted; Investigation; Protocol; Protocols documentation; Techniques; System; Operative Procedures; Surgical; Surgical Interventions; Surgical Procedure; surgery; Operative Surgical Procedures; Services; Surgeon; experience; Performance; success; fluorophore; novel; Reporting; Position; Positioning Attribute; Modeling; Property; Photobleaching; image-based method; imaging method; imaging modality; preventing; prevent; Advocate; Resolution; Monitor; Tracer; Development; developmental; Image; imaging; Pathway interactions; pathway; cost; optical imaging; optic imaging; design; designing; cost effective; fluorescence imaging; fluorescent imaging; tissue phantom; FDA approved; molecular phenotype; 3D Print; 3-D print; 3-D printer; 3D printer; 3D printing; three dimensional printing; Geometry; phase III trial; phase 3 trial; contrast enhanced; imaging system; targeted imaging; career networking; career fair; professional networking; speed networking; web portal; internet portal; on-line portal; online portal; web-based portal; perfusion imaging; fluorescence-guided surgery; imaging facilities; imaging center