SBIR-STTR Award

Utilizing Carbon Dioxide (CO2) as a Feedstock to Produce Commodity Chemicals
Award last edited on: 9/2/2023

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$1,224,999
Award Phase
2
Solicitation Topic Code
CT
Principal Investigator
Chern-Hooi Lim

Company Information

New Iridium Inc

2870 East College Avenue Unit 106
Boulder, CO 80303
   (573) 999-6220
   N/A
   www.newiridium.com
Location: Single
Congr. District: 02
County: Boulder

Phase I

Contract Number: 1947053
Start Date: 1/1/2020    Completed: 12/31/2020
Phase I year
2020
Phase I Amount
$224,999
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project is to develop special metal-free catalysts to dramatically reduce chemical manufacturing costs. In addition, these catalysts significantly expand the range of light-driven reactions, leading to profound advancements in pharmaceuticals, healthcare, agriculture, biology, material science, and other industries. Because light-driven chemical technology predominantly relies on scarce and expensive precious metal catalysts, it is limited today to small-scale R&D applications only. At scale, light-driven technology using metal-free catalysts can greatly reduce chemical manufacturing costs by replacing conventional reactions that rely on expensive precious metals, which are also limited to specific classes of reactions. This new chemistry will significantly expand the possibilities for applications of light-driven chemical technology, leading to novel products and greater consumer access through lower costs.This Small Business Innovation Research (SBIR) Phase I project proposes to demonstrate the suitability of metal-free (organic) photoredox catalysts (PCs) in challenging and important pharmaceutical reactions. Organic PCs are key enablers of photoredox catalysis, an emerging field of chemistry gaining significant traction in drug development. Driven by light absorption, photoredox catalysis offers significant advantages over conventional heat-driven methods (e.g. Pd catalysis), including cost, ease of use, and broadened fields-of-use. Importantly, organic PCs are sustainable and scalable alternatives to predominantly used precious metal PCs, allowing photoredox catalysis to extend to full industrial use, including drug manufacturing. To spur industrial adoption of photoredox catalysis, research objectives include proving feasibility of organic PCs in medicinally important reactions, while expanding substrate scope to include biologically relevant and highly functionalized substrates typically used in drug designs. Photoredox-catalyzed reactions powered by organic PCs will access new chemistries beyond capabilities of conventional heat-driven catalysis. In addition, guided by quantum simulations, new high-performance organic PCs will be developed with unique properties beyond those reported in the literature, unlocking new transformations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Phase II

Contract Number: 2151548
Start Date: 5/1/2023    Completed: 4/30/2025
Phase II year
2023
Phase II Amount
$1,000,000
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) project is abating carbon dioxide (CO2) emissions in the production of terephthalic acid, a large-scale commodity chemical. Development of this technology will provide a pathway for direct utilization of CO2 in everyday products. For example, implemented at scale, the proposed process has potential to sequester about 20 million metric tons of CO2 annually, equivalent to the emissions from 4.3 million cars. This project also has significant commercial potential. By delivering a lower-carbon product at lower cost than the current technology, the proposed innovation has the potential to become the de facto standard for manufacturing this commodity chemical. Annual licensing and ancillary revenue from a single plant is estimated at $30 million, and at 70-80% market share, typical for the dominant process, annual revenue could grow to over $1.5 billion. The success of this project will also provide a scientific and entrepreneurial blueprint to spur similar efforts thus advancing the state of the art of CO2 utilization technologies.This SBIR Phase II project proposes to develop a light-driven chemical technology that enables the use of CO2 as a raw material in large scale chemical production of terephthalic acid. This project abates CO2 emissions by converting CO2, captured from point sources such as industrial flue stacks or direct air capture, to useful chemical and consumer products. Carbon dioxide is a stable compound and is typically unreactive and therefore incompatible with traditional heat-driven processes. The proposed project will help mature the technology of CO2 activation by photocatalysis, which has been shown to be effective in inducing CO2 reactivity. The first step is to demonstrate the feasibility of using CO2 to produce the target chemical at bench scale. Next, the reaction performance will be optimized using high-throughput experimentation techniques. Finally, the process will be scaled up in a photo flow photoreactor. In this part of the project, engineering scale up issues will be addressed as a precursor to realizing a production plant.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.