Industrial facilities, manufacturing plants, and electric power plants that burn fossil fuels exhaust the combustion products to atmosphere through their smokestacks. Stack pollutant emissions are quantified using manual testing methods developed in the 1960s, which are prone to error if complex flow patterns exist, which is common. Recently, NIST has been working on an improved technique of performing 3D flow testing for smokestacks, which will greatly reduce the complexity, duration, and potential for human error. Advanced data acquisition systems and software are required to accommodate the NIST test methodology. These systems must be highly accurate but also able to operate in potential harsh environmental conditions since the testing is conducted year round on outdoor platforms of smokestacks. The Phase II SBIR will continue the research and development of the Phase I effort for NIST. During Phase I, a prototype data acquisition device was developed, and proved to successfully meet the project goals, proving feasibility of the system. During a Phase II effort, the development will be expanded to create a complete system, capable of full-scale testing at industrial plants. A test site in Michigan will be selected, likely a DTE Energy site, to prove out the system and verify operation.