SBIR-STTR Award

Combinatorial Discovery of Heterogeneous Catalysts Utilizing Emission Spectroscopy and Advanced Machine Learning
Award last edited on: 2/23/2019

Sponsored Program
SBIR
Awarding Agency
DOE
Total Award Amount
$1,150,000
Award Phase
2
Solicitation Topic Code
06a
Principal Investigator
Christopher Metting

Company Information

AccuStrata Inc

5000 College Avenue Suite 3102
College Park, MD 20740
   (301) 314-2116
   info@accustrata.com
   www.accustrata.com
Location: Single
Congr. District: 05
County: Prince Georges

Phase I

Contract Number: DE-SC0018887
Start Date: 7/2/2018    Completed: 4/1/2019
Phase I year
2018
Phase I Amount
$150,000
In this SBIR Phase I project, AccuStrata, Inc. will work with researchers at the University of South Carolina to create a high-throughput flame spray pyrolysis (FSP) system for the rapid, combinatorial discovery and optimization of heterogeneous catalysts. The proposed system will comprise three key features: (1) Optimization and operation of the high-throughput FSP system that is uniquely capable of creating Pd-CeO2-MnOx solid solution catalysts; (2) Integration of an in-situ laser induced breakdown spectroscopy system capable of monitoring the particle synthesis in real time; and (3) Development of an advanced machine learning algorithm that will utilize process parameters (flow rates, burner geometry, temperatures, precursor concentrations, etc.), in-situ laser induced breakdown spectroscopy measurements and post-synthesis characterization datato discover critical signatures within the emission spectra that can help narrow material search space and speed up materials discovery. The proposed system will integrate these features to provide a holistic, commercialize solution for combinatorial discovery of heterogeneous catalysts. A system with these unique capabilities will be of great interest to laboratories both at the university and industry levels. The SBIR proposal team will validate the approach by developing stable solid solution catalysts for natural gas combustion engines. Flame spray pyrolysis can be used to create catalysts from a wide array of materials. In addition, nanoparticle synthesis through FSP allows for precise control over crystallite size, crystalline phase, degree of aggregation and agglomeration, surface area and porosity, which makes it an ideal technique for heterogeneous catalysis discovery. While the technique provides incredible flexibility, complete characterization of the nanoparticles quality post-synthesis is often a slow process that hinders the discovery process. Laser induced breakdown spectroscopy is a processing in-situ technology for monitoring FSP but is an especially difficult characterization method due to the various emission lines originating from the fuel, precursors and by-products. The challenge of correlating the emission spectra to nanoparticle properties may be resolved using advance machine learning algorithms that can correlate the spectral response to the resulting nanoparticle properties as well as the processing parameters. Once the algorithm is trained, it can be used with real-time emission data as a prescreening so that only the most “promising” candidates (as determined by the algorithm) will be flagged for further study. The goal of this SBIR phase I work will be to provide a proof-of-concept for the metrology and algorithms approach. Once the teams have validated the approach, a completely integrated system will be developed and commercialized in a subsequent phase II.

Phase II

Contract Number: DE-SC0018887
Start Date: 8/19/2019    Completed: 8/18/2021
Phase II year
2019
Phase II Amount
$1,000,000
In this SBIR Phase II project, AccuStrata, Inc. will continue its work to create a high-throughput integrated laser induced breakdown spectroscopy (LIBS)/flame spray pyrolysis (FSP) system for the rapid, combinatorial discovery and optimization of heterogeneous catalysts. The proposal will build off the successes in Phase I by: • Creating an integrated LIBS/FSP system • Integrating controls for both LIBS and FSP into the machine learning infrastructure • Continue to acquire new data to train and optimize the machine learning algorithm • Install onto a commercial burner The proposed system will integrate these features to provide a holistic, commercialize solution for combinatorial discovery of heterogeneous catalysts. A system with these unique capabilities will be of great interest to laboratories both at the university and industry levels.Flame spray pyrolysis can be used to create catalysts from a wide array of materials.In addition, nanoparticle synthesis through FSP allows for precise control over crystallite size, crystalline phase, degree of aggregation and agglomeration, surface area and porosity, which makes it an ideal technique for heterogeneous catalysis discovery. While the technique provides incredible flexibility, complete characterization of the nanoparticles quality post-synthesis is often a slow process that hinders the discovery process Laser induced breakdown spectroscopy is a processing in-situ technology for monitoring FSP but is an especially difficult characterization method due to the various emission lines originating from the fuel, precursors and by-products. The challenge of correlating the spectra to nanoparticle properties may be resolved using advance machine learning algorithms that can correlate the spectral response to the resulting nanoparticle properties as well as the processing parameters. Once the algorithm is trained, it can be used with real-time emission data as a prescreening so that only the most “promising” candidates (as determined by the algorithm) will be flagged for further study. The goal of this SBIR phase II work will be to utilize the information gained in Phase I to create a prototype system for the metrology and algorithms approach. Additionally, because the algorithms will be agnostic to the type of features that are used to train it, the LIBS technology will be applied to commercial burner systems for using the same algorithms to identify poor quality emission from fossil fuel power plants. Successful completion of this SBIR Phase II work will lead to a commercialize technology with broad application, not only in catalysis, but in general flame by product monitoring.