SBIR-STTR Award

PRISMS - Profile Resolving In-Situ Soil Moisture Sensor
Award last edited on: 6/24/2015

Sponsored Program
SBIR
Awarding Agency
DOE
Total Award Amount
$1,053,419
Award Phase
2
Solicitation Topic Code
20a
Principal Investigator
Neal Van Wyck

Company Information

Transcend Engineering & Technology LLC (AKA: Transcend Engineering and Technology LLC)

768 South Main Street Unit 2
Bethel, VT 05032
Location: Single
Congr. District: 00
County: Windsor

Phase I

Contract Number: ----------
Start Date: ----    Completed: ----
Phase I year
2013
Phase I Amount
$149,302
Many contaminated DOE sites are located in arid regions where depth to groundwater is significant and/or contaminants were discharged into a vadose zone through which transport to the groundwater table is dominated by unsteady, unsaturated groundwater flow. The absence of an effective means to monitor vadose zone moisture content in profile has been a persistent impediment to developing and calibrating transport models critical to site management, and to monitoring the dynamic moisture conditions that have a controlling influence on contaminant transport in the vadose zone. We propose to research an in situ monitoring concept that may provide the ability to spatially resolve volumetric soil moisture in profile (as well as water table elevation), thus enabling substantial improvements in the state-of-the-art of model development, verification, and long-term monitoring crucial to effective site management and remediation. Preliminary experimental data in a limited range of conditions establish the feasibility of the approach, which combines advances in the processing of time domain reflectometry (TDR) data with innovations in the physical sensing apparatus, thus enabling the acquisition of spatially resolved soil moisture profiles. The sensor will be suitable for installation into boreholes created by both direct push and drilling methods, using a flexible borehole lining technology that is well-established in environmental site characterization and monitoring, to ensure intimate contact with the formation and suppress the potential for hydrologic short-circuiting through the borehole. Phase 1 will include laboratory to research performance of the method in a range of soil types and at varying pore water salinities, and will also research the suitability of commercial flex circuit manufacturing technology to produce waveguides of the physical characteristics required to maximize precision, accuracy, durability, and achievable length of continuous measurement profile. Phase I will also research issues associated with design for deployability using flexible borehole liner technology and will produce prototype PRISMS for later emplacement at a DOE IFRC site, where time series data will be acquired from PRISMS and compared to periodic neutron logging of nearby boreholes. Phase 2 will research in situ performance by producing and installing prototypes at a DOE test site, investigate design for manufacturability, rigorously assess pathways to commercialization, and evaluate full lifecycle costs and benefits of the technology if fully commercialized. Commercial Applications and Other

Benefits:
In addition to the public benefit of improved environmental site management, future applications of the technology, if developed through Phase 2 and beyond, include monitoring for advance warning of landslide-producing moisture conditions, climate research and permafrost monitoring, and sensing ice formation on aircraft wings, all of which have clear public safety benefits.

Phase II

Contract Number: ----------
Start Date: ----    Completed: ----
Phase II year
2014
Phase II Amount
$904,117
We are developing a subsurface monitoring technique for providing spatially resolved profiles of soil moisture in the vadose zone that can be easily deployed using either cone penetration testing (CPT) technology, conventional drilling, or in some applications, direct burial. The technology has application to a wide variety of earth and environmental science and infrastructure monitoring challenges. The ability to field an in situ monitoring device that can spatially resolve soil moisture (as well as water table elevation) in profile will substantially assist with understanding specific sites, as well as help improve the state-of-the-art in model development, verification, and long-term monitoring that are crucial to effective remediation and understanding coupled biological, geochemical, and physical (hydrologic) processes in the unsaturated zone. Our technical approach extends the state of the art in time domain reflectometry (TDR) for soil moisture determination to enable quantitative and robust decision support at vadose zone environmental management sites. The sensor we will develop combines advances in the processing of TDR data with innovations in the physical sensing apparatus. These advancements enable high temporal (and thus spatial) resolution of reflectance continuously along the inside surface of a borehole using a flexible parallel waveguide that is permanently emplaced against the geologic formation. The spatially resolved reflectance is directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. PRISMS will thus be able to monitor soil moisture in profile (as well as water table elevation) with high spatial and temporal resolution, to enable substantial improvements in the state-of-the-art of model development, verification, and long-term monitoring crucial to effective site management and remediation. In contrast, most existing commercial TDR-based moisture sensors perform a bulk characterization of the soil volume surrounding a short, un-insulated waveguide, and therefore cannot resolve spatial variability in the soil condition. Phase I included laboratory to research performance of the method in a range of soil types and at varying pore water salinities, and also researched and identified commercial manufacturing techniques to produce waveguides of the physical characteristics required to maximize precision, accuracy, durability, and achievable length of continuous measurement profile. Phase I will also assessed issues of deployability and produced prototype PRISMS that were emplaced at a DOE IFRC site, where time series data were acquired from PRISMS. The goals of Phase II are to continue to increase the technical effectiveness of PRISMS and to advance its readiness for commercial production. Specific tasks include: improving sensitivity and noise immunity through waveguide design optimization; refining and extending multi-reflection deconvolution and other algorithms to improve response to steep moisture gradients; addressing complications due to elevated pore water ionic strength; determining requirements for integration into third party electronic reflectometry equipment; and perfecting various methods of emplacing long vertical PRISMS waveguides in situ. Field demonstrations are also included in the proposed work.