SBIR-STTR Award

Snapshot Image Mapping Spectrometer (Ims) for High Resolution Biological Imaging
Award last edited on: 4/11/16

Sponsored Program
SBIR
Awarding Agency
NIH : NIGMS
Total Award Amount
$691,721
Award Phase
2
Solicitation Topic Code
-----

Principal Investigator
Artur Olszak

Company Information

Rebellion Photonics Inc (AKA: Rebellion Photonics Inc)

7547 South Freeway
Houston, TX 77021
   (713) 218-0101
   N/A
   www.rebellionphotonics.com
Location: Single
Congr. District: 18
County: Harris

Phase I

Contract Number: 1R43GM099349-01
Start Date: 9/15/11    Completed: 8/31/13
Phase I year
2011
Phase I Amount
$348,487
Snapshot Image Mapping Spectrometer (IMS) for High Resolution Biological Imaging Indirect Imaging is proposing, through the SBIR funding mechanism, to develop an innovative imaging device that will allow economical snapshot hyperspectral imaging for real time microscopy and other biomedical applications, and is compatible with most research grade light microscopes. Recent advances in fluorescent probes, detector technology and micro-fabrication now make it possible to build an Image Mapping Spectrometer (IMS) - a device for rapid, real time quantitative spectral imaging. The IMS is a widefield method for acquiring full spectral information simultaneously from every pixel. It has superior signal-to-noise ratio compared to scanning hyperspectral systems and can be used with optical sectioning methods such as Nipkow disk. The IMS works by spatially redirecting image zones to obtain space between lines and using a multi-prism element to acquire simultaneously spectral and spatial information about the object. The final spectral cube is reconstructed by remapping the pixel locations from the CCD 2D image sensor to respective voxels (x, y,;). This is a Phase I proposal, in which we will focus on (1) developing a larger format IMS system capable of collection a (x, y,;) datacube of size 500 x 500 x 48 with an initial wavelength range of 450 to 700 nm and testing the Image Mapping Spectrometer against currently available spectral imaging systems in several live cell imaging applications. In parallel the project will pursue (2) developing the means to manufacture an Image Mapper at minimal costs - the fabrication process is currently expensive and time consuming taking 100+ hours/per part depending on the size and complexity. We will pursue a new diamond ruling fabrication approach that has a potential to dramatically shorten the fabrication time. In addition we will implement (3) automatic calibration procedures and software for real-time data analysis and visualization leading to optimized performance, improved resolution and frame-rate spectral unmixing capability. For the first time this will provide researchers with immediate, live feedback in real-time living cell hyperspectral imaging. In summary, the IMS has the potential to significantly advance a wide range of applications in the area of cellular imaging by reducing the phototoxicity and photobleaching and allowing hyperspectral analysis at high frame rates. To further its impact, in the future, we plan to combine the IMS with optical sectioning by using structured illumination, Nipkow disk confocal, and/or spatial deconvolution. These 4-dimensional imaging systems (X, Y, Z,;) would further improve the signal-to-noise ratio of the collected images and improve their speed.

Public Health Relevance:
The project targets the development of a modern spectrometer called high sampling Image Mapping Spectrometer enabling high resolution spectral imaging in real time. In consequence researchers will be able to rapidly advance the investigation of live cells with multiple fluorescent contrasts. The instrument's principle allows obtaining spectral information for entire image without scanning and thus improve signal to noise ratio and limit photo-bleaching effects. It also allows more efficient investigation of transient biological events. Technologies applied in the project and their low cost may potentially allow access of larger group of scientists to spectral imaging instrumentation.

Thesaurus Terms:
4-Dimensional;Address;Americas;Area;Biological;Businesses;Ccd Camera;Calibration;Cell Communication And Signaling;Cell Signaling;Cells;Collection;Communities;Complex;Computer Software Tools;Computer Software;Custom;Data;Data Analyses;Data Analysis;Data Collection;Development;Devices;Diamond;Elements;Event;Feedback;Fluorescent Probes;Four-Dimensional;Funding Mechanisms;Future;Generations;Goals;Hour;Illumination;Image;Imagery;Imaging Device;Imaging Tool;Intracellular Communication And Signaling;Investigation;Investigators;Loinc Axis 4 System;Lead;Life;Light Microscope;Lighting;Location;Maps;Marketing;Methods;Microscope;Microscopy;Modeling;Noise;Optics;Paper;Pb Element;Performance;Phase;Photobleaching;Phototoxicity;Prize;Procedures;Process;Research;Research Personnel;Research Specimen;Researchers;Resolution;Rice;Sbir;Sbirs (R43/44);Sampling;Scanning;Scientist;Side;Signal Transduction;Signal Transduction Systems;Signaling;Small Business Innovation Research;Small Business Innovation Research Grant;Societies;Software;Software Tools;Solutions;Specimen;Speed;Speed (Motion);Structure;System;Techniques;Technology;Testing;Thailand;Time;Universities;Validation;Visualization;Work;Base;Biological Signal Transduction;Biological Systems;Cardiac Scanning;Cell Imaging;Cellular Imaging;Charge Coupled Device Camera;Commercialization;Computer Program/Software;Cost;Design;Designing;Detector;Developmental;Experiment;Experimental Research;Experimental Study;Heart Imaging;Heart Scanning;Heavy Metal Pb;Heavy Metal Lead;Imaging;Improved;Innovate;Innovation;Innovative;Insight;Instrument;Instrumentation;Meetings;News;Optical;Photonics;Prototype;Research Study;Sensor

Phase II

Contract Number: 5R43GM099349-02
Start Date: 9/15/11    Completed: 12/31/13
Phase II year
2012
Phase II Amount
$343,234
Snapshot Image Mapping Spectrometer (IMS) for High Resolution Biological Imaging Indirect Imaging is proposing, through the SBIR funding mechanism, to develop an innovative imaging device that will allow economical snapshot hyperspectral imaging for real time microscopy and other biomedical applications, and is compatible with most research grade light microscopes. Recent advances in fluorescent probes, detector technology and micro-fabrication now make it possible to build an Image Mapping Spectrometer (IMS) - a device for rapid, real time quantitative spectral imaging. The IMS is a widefield method for acquiring full spectral information simultaneously from every pixel. It has superior signal-to-noise ratio compared to scanning hyperspectral systems and can be used with optical sectioning methods such as Nipkow disk. The IMS works by spatially redirecting image zones to obtain space between lines and using a multi-prism element to acquire simultaneously spectral and spatial information about the object. The final spectral cube is reconstructed by remapping the pixel locations from the CCD 2D image sensor to respective voxels (x, y,;). This is a Phase I proposal, in which we will focus on (1) developing a larger format IMS system capable of collection a (x, y,;) datacube of size 500 x 500 x 48 with an initial wavelength range of 450 to 700 nm and testing the Image Mapping Spectrometer against currently available spectral imaging systems in several live cell imaging applications. In parallel the project will pursue (2) developing the means to manufacture an Image Mapper at minimal costs - the fabrication process is currently expensive and time consuming taking 100+ hours/per part depending on the size and complexity. We will pursue a new diamond ruling fabrication approach that has a potential to dramatically shorten the fabrication time. In addition we will implement (3) automatic calibration procedures and software for real-time data analysis and visualization leading to optimized performance, improved resolution and frame-rate spectral unmixing capability. For the first time this will provide researchers with immediate, live feedback in real-time living cell hyperspectral imaging. In summary, the IMS has the potential to significantly advance a wide range of applications in the area of cellular imaging by reducing the phototoxicity and photobleaching and allowing hyperspectral analysis at high frame rates. To further its impact, in the future, we plan to combine the IMS with optical sectioning by using structured illumination, Nipkow disk confocal, and/or spatial deconvolution. These 4-dimensional imaging systems (X, Y, Z,;) would further improve the signal-to-noise ratio of the collected images and improve their speed.