SBIR-STTR Award

Commercial Scale Production of Synthetic Spider Silk Fibers
Award last edited on: 3/9/2012

Sponsored Program
SBIR
Awarding Agency
NSF
Total Award Amount
$1,175,000
Award Phase
2
Solicitation Topic Code
BC
Principal Investigator
Daniel M Widmaier

Company Information

Bolt Threads Inc (AKA: Refactored Materials Inc)

5858 Horton Street Suite 400
Emeryville, CA 94608
   (415) 325-5912
   hello@boltthreads.com
   www.boltthreads.com
Location: Single
Congr. District: 12
County: Alameda

Phase I

Contract Number: 1013948
Start Date: 7/1/2010    Completed: 6/30/2011
Phase I year
2010
Phase I Amount
$175,000
This Small Business Innovation Research (SBIR) Phase I project will demonstrate the commercial feasibility of producing high-toughness spider silk fibers for use in personal ballistic armor. Spider silk is one of nature's most remarkable materials, possessing high tensile strength and high extensibility, giving it an unrivaled toughness as compared with common synthetic fibers. In addition, it is lightweight, breathable, and flexible making it an ideal material for use in protective clothing such as body armor. Previous approaches to produce synthetic spider silk proteins have been based on incomplete silk sequences and previous efforts to create a silk spinneret have not sufficiently replicated the conditions inside the silk gland. In this project, the latest advances in genetic engineering and synthetic biology will be used to redesign a natural silk gene to enable expression of silk protein in a recombinant host. This methodology is similar to recent work which enabled the production of chemicals and fuels from renewable sources. Advanced microfluidics manufacturing will be used to create a spinneret that replicates a natural spider's silk gland. Combined, these technologies will result in a reproducible, scalable, and "green" method of manufacturing the next generation of high performance fibers for personal protective armor. The broader impact/commercial potential of this project is the creation of high-performance and lightweight body armor utilizing a better material at a lower price than current ballistic fibers. The market for body armor in the US is in the hundreds of millions of dollars annually; the proposed product will be able to achieve a significant profit margin due to its low initial costs and straightforward scale-up. Tougher, more comfortable, and cheaper bulletproof vests will benefit police, soldiers, guards, and anyone else who faces harm from projectiles. Lightweight and tough fibers have applications in numerous other markets, ranging from textiles to sporting goods. In addition, the ability to precisely control silk fiber properties will enable better understanding the assembly mechanisms of protein-based fibers and enable the creation of novel materials with mechanical properties tailored to application requirements. Finally, the research proposed herein will enable the inexpensive production of protein materials (specifically, silk materials) for use in a wide variety of non-fibrous systems including tissue engineering scaffolds, medical devices, and optical sensors

Phase II

Contract Number: 1151896
Start Date: 3/1/2012    Completed: 2/29/2016
Phase II year
2011
Phase II Amount
$1,000,000
This Small Business Innovation Research (SBIR) Phase II project will continue the development and commercialization of spider silk fibers commenced in the Phase I effort. Spider silk is a unique material in nature that is currently inaccessible on a commercial scale. Spider silk and other protein polymers are broadly useful in fields ranging from specialty textiles, to medical devices and advanced composites. The critical limitation in producing artificial spider silk fibers has been the lack of availability of bulk silk material and the knowledge of how to appropriately process the polymer into a product of native quality. This project will continue prior work to deliver scalable quantities of material through microbial production of spider silk protein using a commercially viable cost structure. In addition, this project will examine the key parameters for processing silk polymer into fibers whose properties surpass those of native spider silk. The ability to produce prototype silk fibers from recombinant protein will enable the initial steps towards commercializing spider silk fiber-based products. The broader impact/commercial potential of this project is important to the adoption of a job-creating bio-based economy in the United States. The ability to produce protein polymers has bedeviled biological researchers for decades. Many important structural proteins and enticing commercially-useful materials have remained effectively impossible to produce. The advent of cutting-edge techniques in synthetic biology, microfabrication, and materials processing now make the production of protein polymers and the processing of them into beneficial technologies a realistic goal. Potential applications of protein-based polymers include a full range of sophisticated materials that are furthermore "green" and sustainable. Spider silk polymers, due to their mechanical properties, can potentially be used to create the next generation of ballistic fibers in the production of armor for military, law enforcement, and private users. In addition, the ability to produce advanced polymers independent of petroleum sources is a key goal of the emerging bio-based economy. Lastly, many protein polymers (including silk) are biocompatible and biodegradable and thus can form the basis for new classes of medical materials used to replace or re-grow connective tissues with implants or devices.