Phase II year
2011
(last award dollars: 2013)
This Small Business Innovation Research (SBIR) Phase II project aims to develop next-generation supercritical CO2 metalworking fluid (MWF) technology for highly demanding metal forming applications. The approach is to deliver specialized environmentally-friendly lubricants with supercritical CO2, achieving tool wear rates, forces, and surface finish at least as good as aqueous-based MWFs that are currently in use. It is anticipated that a much smaller amount of MWFs will be required with this technology. The formulation of new supercritical MWFs and the optimization of flowrates of oil and CO2 for metalworking processes will be studied. The patented supercritical CO2 system (so-called CHiP Lube) will be evaluated in real industrial settings to confirm its capability to replace current MWFs. The effectiveness and efficacy of CHiP Lube system will also be scaled and applied to other common industrial metal working processes such as rolling, extruding, and cutting. The broader/commercial impacts of this project will be the potential to provide an environmentally-benign lubricant system as an alternative to conventional MWFs with equal or better performance and lower cost. At any given time, approximately 2 billion gallons of MWFs are in use in the U.S.A. This represents a massive waste stream that must be treated and remediated. Plus, the negative effects of MWFs on worker health and safety are well documented. The components of CHiP Lube are naturally occurring and used in extremely low quantities. Therefore, the waste treatment and worker health concerns are minimized. CHiP Lube has been demonstrated in simple metal removal applications as providing lower tool wear and/or higher machining speeds than conventional MWFs, thereby leading to a lower overall cost of manufacturing. In addition, no carbon dioxide will be produced to run the process, as the CO2 used in the process will be recovered from other industrial processes such as ammonia and ethanol production