SBIR-STTR Award

High Energy and Power Density Supercapacitors Utilizing Electrodes Comprising Nanofibrous Carbon-Carbon Composites
Award last edited on: 8/6/2020

Sponsored Program
STTR
Awarding Agency
NSF
Total Award Amount
$784,939
Award Phase
2
Solicitation Topic Code
MM
Principal Investigator
Lissa King Magel

Company Information

Solarno Inc

153 Hollywood Drive
Coppell, TX 75019
   (214) 616-6443
   jferraris@solarno.com
   www.solarno.com

Research Institution

University of Texas

Phase I

Contract Number: 0930699
Start Date: 7/1/2009    Completed: 1/31/2011
Phase I year
2009
Phase I Amount
$150,000
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This Small Business Technology Transfer Phase I project will develop novel multifunctional materials based on polyaniline (PAni) nanofibers (PANFs) and carbon nanofibers(CNFs) for energy storage. Although PAni composites have been reported for a wide range of applications, including sensors, biosensors, photoelectrochromic cells, etc., due to their excellent electrical, thermal and mechanical properties, none capitalize on the enhanced properties expected from the combination of PANF with CNF. PANFs have greater electronic conductivity than PAni nanospheres and nanorods and can be synthesized on a variety of substrates. Solarno will use a proprietary process for synthesizing composites of PANFs on CNFs. In Phase I Solarno will use these composites as electrode materials for asymmetric supercapacitors, an enabling technology that provides both high energy and power, with the specific technical objectives of: synthesizing and characterizing PANFs on CNF substrates, and achieving supercapacitor performance of 15 Wh/kg, 10 kW/kg and >10 cycles, thus far exceeding current lead acid batteries in terms of power and cycle life. In Phase II we will improve the energy density of these devices to enable potential replacement of such batteries, and explore other functions for the composites, such as sensors and electro-chemical devices. The PANF/CNF composites developed by Solarno will be introduced to the supercapacitor market via materials sales, and partnering/licensing arrangements, and later to related electrochemical functions/applications. Solarno is targeting requirements of the Hybrid Electric Vehicle (HEV) market for its initial supercapacitor designs, and as such, the ultimate customers will be major automobile manufacturers. The market requires that capacitors provide higher energy density, reduced size, higher reliability, and lower cost. Commercially available EDLCs commonly provide energy densities around 4 Wh/kg, and power densities between 15-21 kW/kg. The supercapacitor developed here can excel in this market by providing energy density > 25 Wh/kg and better reliability (>2.0 x 104 cycles); the Phase I work will optimize the properties of our PANF/CNF composite to meet this goal. The supercapacitors will also be well-suited for load-leveling for renewable energy sources; direct societal benefits will come from improving the viability of HEVs and renewable sources, tied to reductions in fossil fuel consumption, providing bridge power for wind and solar power farms, and partially replacing lead acid storage batteries. The results of this work in optimizing PAni composites for supercapacitors will translate well into improved functionality for other applications

Phase II

Contract Number: 1127564
Start Date: 11/1/2011    Completed: 10/31/2014
Phase II year
2012
(last award dollars: 2014)
Phase II Amount
$634,939

This Small Business Technology Transfer (STTR) Phase II project will optimize the technology developed in Phase I for the fabrication of composite carbon nanofibers incorporating mesoporous high surface area carbon as an electrode material for supercapacitors utilizing ionic liquid electrolytes. The Phase I results showed that test devices incorporating our patent-pending carbon fibers have surpassed the performance of commercial supercapacitors and can provide energy densities approaching that of lead acid batteries with superior gravimetric power density. The technology is to be further developed and optimized using lower cost polymer precursors and carbon templates. Achievement of our Phase II goals of 30 Wh/kg at 10 kW/kg (packaged) with consistent performance up to 5x10^5 cycles means that this technology can become the material of choice for application to high-energy, high-power energy storage systems. The broader impact/commercial potential of this project lies in greatly expanding the market for supercapacitors for existing products and enabling new technologies, especially in those areas requiring energy densities that are higher than those provided by current supercapacitors. Such supercapacitors will be well suited for application to the Hybrid Electric Vehicle (HEV) market, including rapid charging stations; frequency regulation for the electric grid; and load leveling for renewable energy sources. Direct societal benefits will come from improving the viability of HEV due to reductions in fossil fuel consumption, improvements in power grid reliability, reducing costs for renewable energy production, and in replacing lead acid batteries. The world demand for supercapacitors is expected to reach $1.2 billion by 2015.